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TEMPERATURE STRESSES IN AN ANISOTROPIC CYLINDER

B. I. Birger

ABSTRACT. Analysis of thermal stresses in
an infinite, elastic, orthotropic cylinder sub-
jected to axisymmetric heating. Exact formulas
are derived for constant elastic parameters and
for elastic parameters varying along the radius.
A computational algorithm is given for a lamin-
ated cylinder with an arbitrary number of layers.
A system of first-order differential equations
suitable for numerical integration is obtained.

Consider an elastic infinitely long cylinder which is orthotropic and /24*

has a cylindrical anisotropy. We shall use a cylindrical coordinate system

in which the z axis, directed along the axis of the cylinder, is at the same

time the axis of anisotropy. The generalized Hooke law for this case has the

form [1]

e, =-G., £ z + (T,

e = -.... at + a GE Z +a T,

zz- - o -Z - G + * T, ,Er El Y? Ez

'Pz = i. ?j, ez = -G rz,

1

Here sij and i.. are components of the strain and stress tensors; T is the

temperature field; E, v, G, a are the elasticity moduli, Poisson's ratios,

shear moduli, and coefficients of linear expansion in the directions indi-

cated by subscripts. Moreover,

Numbers in the margin indicate pagination in the original foreign text.
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All thermoelastic coefficients and the temperature field depend only on r.

Considering the symmetry of our problem, we shall express the components of

the strain tensor in terms of the radial and axial displacements, u(r) and

w(z):

, dur cice const, 

£ry == ET z = E= = 0. O I

',dr ' r dz
==o.(3)

Using (1) and (3), we find the relationship between the stress tensor

components and u(r):

a, = n ddr +A2 r Al3 e--, T (4)
di- dt

0a = All ,r+ A2 2 r + A 23C- , T, (5)
du, I o.,:-= 3 t1 3 r-- A3 3 C - Pzr (6) /25

=a a (7)

where

E 1 (',= +V + V2Z )
A13 _ . '( '-Ac --- A2 = 3O D A .

9 == A I -+ A,2ay + Al 3az,
P9 - A,2a, ,,r d22C'Y +- A23 Lz 

Pz =- A3a, -I- 23a,a -- A33 %.

Substituting (4) and (5) in the equation of equilibrium

drr

we obtain an equation for u(r)

.. d-I,_dAl 1 di ' dA 1 \ u_All da-5 + All, r?,d-- d- - A22 -r - r-=
dr '02 dr ) rdr- d r ( 9(9)
A23 -- A13 d \A13 e + T) + P,) T.

dr dr r
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Upon introducing the variables
u: = It,

dII u (10)
u2 = ,, = All - + A 12 -+ A13 e-- )

(9) reduces to two equations of first-order

du, Aj, ul, u, A, PI+u -- l+ A ' - _ T!
dr A,, r All Al l All

dr (-22 All ) r
2

+A(A ) (23- A /

( A, 2- T \All

The boundary conditions for a hollow cylinder are written as

a) u2 (a) = 0, b) u2 (b) = 0, (12)

where a and b are the inner and outer radii, respectively. For a solid

cylinder Condition (12, a) is replaced by the condition that u2 be finite at

r = 0. The constant e can be determined from the condition of equilibrium

along the z axis

b.

SX zz 2xrdr 0. (13)
a

System (11) is convenient in numerical integration since it does not

contain derivatives of the functions E, v, 8, T, that could be given by tables.

In addition, the variables u
1

and u2 are continuous when the parameters change

discontinuously [2].

Equation (9) does!,not have an analytic solution if the coefficients /26

E, v have an arbitrary dependence on r. The solution may be found if the

coefficients are stepwise functions of r. Physically this means that the

cylinder is subdivided by surfaces r = r. into concentric layers ri < r < ri+l,

each of which has its coefficients E(i) , v(i) Then the equations for dis-

placements u.(r) in each layer can be written as
1

dr2 r dr A(l)2 r 7(14)

where id - ()-S)T
whereq(r) = ____'(A) T) -1- r _
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The subscript i shows that when computing a given quantity one should substitute

the coefficients for the ith layer.

A general solution of (14) can be found by the method of variation of

the arbitrary constants

u.i(r) := cr + dir -1- A (r) + fj(r)e, (15)

where ci, di are constants of integration
.

r r
A(r) r rl-Nl r-ni +n

A 2(r) = 2.1 -
o o

A(1) I 2

11
It will be noted that _ > , since v(i)

Substituting (15) in (4), we get

a(i) (r) = lcir- + nd, r'- + , (r) + g e, (16)

where i -
= n.A + A(2), - A + A(

I"" l dr.1+n1 d
B, (r) =- r

!
-

ir dr- ' |
n

i t
r 

o 0o

(A(')+ A(,'l)) (A(') i ) ) (i)
'i 1 2 2. q- Az3).

Letting r = ri in (15) and (16), we express the constants of integration

ci, di in terms of ui(ri) and a(i)(ri)
i i ~~~~~rr
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r1 -- n uit i (rl)r ) r (r,) - n i; Al (r I) 1- rjl;l (rl) -1- [rig - in fi; (r )] ei c= r£ 
ni -n 1

I- t )u (rl) + IiA, (ri) - r;Bt (r;) + Il fl (rl) - ri)gl e

i i - I 

(17)

Now, substituting (17) in (15) and (16), we obtain an expression for

displacements and radial stresses, which depends on the values of these

quantities at the boundary of a given layer r = ri:

t, (r) .c(, (r) Ui, (r,) d- c(i) (r) °() (r,) + cl c (r) e + /) (r),
(r) - c (r) (r,) c)(r) ) (r) - c) (r) c -- D') (r), 

- O3') (r) ::: c~, (r) %, (r) +l c~/)(r) %(?) (rl) -+ c0) (r) e +I [DW' (r),
(18)

where

\ \/ L r'/ \-n -n- __ 11 - (->"Km; ( r)fll;(i) _ .i r[( Ig_-)t (rL) ;

C() (r) r C() (r) ri 
; - 11( - 12 

[ (r r )n - ()fij ( r ,ni ( r )- l g i

I
I

--r, ,

±rt B 
l
(rr) l+ B A(r).

,.3 r l - Ii

L\ r i/ \ ri/ ri (rl) , 
ml - I I

xc(o) (r) ="L ,) _.r _, C~"(r)= '\ '
''21 (ni [(- l- i ) (r m i)- i

lr L?,, [ - - K i - ri)
:d O(r)= = .(r )

mi - ll

i l r L\ r l/

+Hm B, (ri) + B, (r).
r l-- 1i

g~,

u.(r.) and a'i)(ri) enter Equation (18) as arbitrary constants whosevalues are determined from the boundary conditions
values are determined from the boundary conditions.

Letting r = ri in (18) and using the condition of continuity of dis-

placements and radial stresses across a layer interface
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ui+l (r1+') = 1I (r,+), oG(i+) (r,+l) = o (i) (, \l (. t

we obtain a relationship between the constants for the ith and :(i + l)th

layers:

u ,+Il (ri,+ = (r,+) (r) + c,)(r+ol) (r) + c(i) (r,+j e + OD(i) (-
C+0( r1 l) u) c!. (q4 )e + D ) |rr (,+---- c21 (rl+I-) tt (r`,)_ (rl ) ' r)+ .. (r 4 )e+ D ') r

(20)

We shall now give an algorithm for finding the constants ui(ri) and

a(i)(ri). Substituting (18) in (6), we find
rr i

a(') (r)--c,) (r) u? (r) - c(i) (r) o(i') (r) + c (r,) e - D (r) (21)) () where (21)

where

dc() , (I)
C3(1) (i) "1 I(1) 1A(r) =A A13 d+L -- '23 '-,

dr r

a) (r) = A (')+
dr

c3 (r)= A,3 d +
dr

A( 1
3) 3 + A',\ D( (r) = A) 1t +
r dr

'4'!-3 ' T

A force N acts in the cross section, and its magnitude is given by

i A l . r 2 ( r)= =rit. (r,) _ _ v ) 2-,rdr -I-

( r1 I I I/+ Z o?(r,) j 3 crd2rrdr - e + .3 c']2vrur \ ' D? 2wrdr.
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(22)

On the inner surface r = a we have ,(0)(a) = 0) Equations (18), (20), (22)
rr

imply that N and arr (b) are linear functions of u0(a) and e

N ( O(a), e)- pl + q, uI, (a) -1- tLe. 
o, (b, u (a),' ) - p2 + q2 zo (a) + t 2 e.

(23)

With the aid of (20) and (22) we find N (0,0), N (0, 1), N (1, 0), a (b,0,0),

a rr(b,0,), a (b,l,0). The coefficients p, q, t in (23) can be simply expres-

sed in terms of the former

p, =N(O, O), q, N(1, O) - N(O,0), t,=N(O,1) -N(O,O),
p2 = o, (, )0,, q =a,, (b, , 0) - a,,(b, 0, 0),

12 = O,.r(, 0, 1) - a,, (b, , 0).

(24)

(2~.;
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Substituting (24) in (23), and setting N and arr(b) equal to zero, we

obtain two equations from which we can determine u0(a) and e:

N (0, 0) + [IN (1, 0) -,V(0, 0)] no (a) + IN(0, 1) - N(0, 0)]e = 0,
o,,(b, 0, 0) ±+ I,, (b, 1, O)- o, (b, o, 0)] U(a) + (25)

+ [l,, (b, 0, 1)- G,(b, 0, 0) e = 0.

Knowing u0(a) and e, with the aid of (20), we find all ui(ri) and a(i)(ri).

In the case of a solid cylinder we introduce a certain small radius

a << b and require that u0(a). Then the algorithm remains the same if in

Equations (23) - (25) we replace u0(a) with (0)(a).
replace 0 rr
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